Motional entanglement of remote optically levitated nanoparticles (2024)

Table of Contents
I Acknowledgements References

N. Carlon ZambonPhotonics Laboratory, ETH Zürich, CH-8093 Zürich, SwitzerlandQuantum Center, ETH Zurich, CH-8093 Zürich, Switzerland  M. RossiPresent address: Kavli Institute of Nanoscience, Department of Quantum Nanoscience, Delft University of Technology, 2628CJ Delft, The NetherlandsPhotonics Laboratory, ETH Zürich, CH-8093 Zürich, SwitzerlandQuantum Center, ETH Zurich, CH-8093 Zürich, Switzerland  M. FrimmerPhotonics Laboratory, ETH Zürich, CH-8093 Zürich, SwitzerlandQuantum Center, ETH Zurich, CH-8093 Zürich, Switzerland  L. NovotnyPhotonics Laboratory, ETH Zürich, CH-8093 Zürich, SwitzerlandQuantum Center, ETH Zurich, CH-8093 Zürich, Switzerland  C. Gonzalez-BallesteroInstitute for Theoretical Physics, Vienna University of Technology (TU Wien), 1040 Vienna, Austria  O. Romero-IsartICFO – Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels,Barcelona 08860, SpainICREA – Institucio Catalana de Recerca i Estudis Avancats, Barcelona 08010, Spain  A. MilitaruPresent address: Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, AustriaPhotonics Laboratory, ETH Zürich, CH-8093 Zürich, SwitzerlandQuantum Center, ETH Zurich, CH-8093 Zürich, Switzerland

Abstract

We show how to entangle the motion of optically levitated nanoparticles in distant optical tweezers.The scheme consists in coupling the inelastically scattered light of each particle into transmission lines and directing it towards the other particle.The interference between this light and the background field introduces an effective coupling between the two particles while simultaneously reducing the effect of recoil heating.We analyze the system dynamics, showing that both transient and conditional entanglement between remote particles can be achieved under realistic experimental conditions.

Superposition states are one of the most fascinating manifestations of quantum mechanics. When dealing with two or more degrees of freedom, superpositions can produce strong correlations that make the joint state of the system non-separable, or entangled. Several works in the field of nanomechanics have prepared these quantum correlations between the motional degrees of freedom of two mechanical resonators, from individual atomsJostetal. (2009)to microbeamsRiedingeretal. (2018); Wollacketal. (2022), microscale drum resonatorsOckeloen-Korppietal. (2018); Kotleretal. (2021); deLépinayetal. (2021), and acoustic modes of bulk resonatorsBienfaitetal. (2020). Extending this capability to levitated optomechanicsMillenetal. (2020); Gonzalez-Ballesteroetal. (2021)—i.e., generating motional entanglement between two optically levitated nanospheres in high vacuum—is a milestone in the field Rudolphetal. (2020); Chauhanetal. (2020); Brandãoetal. (2021); Rudolphetal. (2023). On the one hand, entangled states would allow levitated nanoparticles to show quantum motional features without necessarily requiring the preparation of non-Gaussian states, a task which remains challenging despite recent proposalsMartinetzetal. (2020); Neumeieretal. (2024); Roda-Llordesetal. (2024). On the other hand, entangled states of two particles at controllable long distances could be used as probes to characterize yet unknown sources of decoherenceMiaoetal. (2010), as well as for quantum-enhanced sensing and metrologyGiovannettietal. (2004, 2004); Zhuangetal. (2018); Gessneretal. (2018, 2018); Xiaetal. (2023).

Recent experiments have taken crucial steps towards entanglement in levitated optomechanics by showing mechanical ground-state cooling of levitated nanoparticles in free spaceTebbenjohannsetal. (2021); Magrinietal. (2021), as well as strong and controllable light-mediated interactions between two levitated nanoparticlesRieseretal. (2022); Reisenbaueretal. (2024). In these setups, however, the trapping laser’s shot noise induces a high degree of motional decoherence which prevents the generation of entanglement Rudolphetal. (2023). So far, proposals to address this issue have included trapping nanoparticles inside a high-finesse optical cavity to enhance the coupling-to-decoherence ratio Rudolphetal. (2023); Delićetal. (2019); Windeyetal. (2019); Vijayanetal. (2024), non-optical coupling mechanismsRudolphetal. (2022); Winkleretal. (2024); Poddubnyetal. (2024), and using squeezed light to reduce measurement backaction noise Rudolphetal. (2023); Gonzalez-Ballesteroetal. (2023).

In this work we propose a method based on optical forces to generate entanglement between levitated nanoparticles across long distances (up to meter-scale) without a high-finesse optical cavity nor the use of squeezed light. We engineer long-range interactions by directional coupling of the light scattered off each nanoparticle into optical transmission lines within a closed loop configuration. Fine tuning of the accumulated phase in the transmission lines allows adjusting the effective coupling sign and strength, and to suppress the photon recoil. We derive the equations of motion for the system and provide analytical description of the system dynamics. Finally, we demonstrate the generation of both transient and conditional entanglement.

Motional entanglement of remote optically levitated nanoparticles (1)

Model - A dielectric nanoparticle illuminated by a tightly focused laser experiences a restoring optical force. For small displacements, its motion is harmonic and imprints a position-dependent phase onto the scattered laser photons, which in turn generate recoilTebbenjohannsetal. (2019). Since scattering events occur randomly, recoil produces a fluctuating force acting on the nanoparticle. This form of optomechanical back-action represents the dominant fluctuating force in ultra-high-vacuum Jainetal. (2016).Hereafter, we focus on the nanoparticle motion along the optical axis z𝑧zitalic_z and introduce the displacement operator q=z/(2zzpf)𝑞𝑧2subscript𝑧zpfq=z/(\sqrt{2}z_{\text{zpf}})italic_q = italic_z / ( square-root start_ARG 2 end_ARG italic_z start_POSTSUBSCRIPT zpf end_POSTSUBSCRIPT ) normalized to the zero point fluctuations zzpf=/(2mΩ0)z_{\text{zpf}}=\sqrt{\hbar/(2m\Omega_{0}})italic_z start_POSTSUBSCRIPT zpf end_POSTSUBSCRIPT = square-root start_ARG roman_ℏ / ( 2 italic_m roman_Ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG ), where m𝑚mitalic_m and Ω0subscriptΩ0\Omega_{0}roman_Ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT denote the nanoparticle mass and resonance frequency, respectively.While light-matter interactions in free space involve every mode of the electromagnetic continuum, it is possible to identify a collective mode that is solely responsible for the optomechanical interaction with q𝑞qitalic_q: the interacting modeMagrinietal. (2021); Militaruetal. (2022); Maureretal. (2023).In the Heisenberg picture, the annihilation operators of the interacting mode before and after the interaction with the particle are denoted by ainsubscript𝑎ina_{\mathrm{in}}italic_a start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT and aoutsubscript𝑎outa_{\mathrm{out}}italic_a start_POSTSUBSCRIPT roman_out end_POSTSUBSCRIPT, respectively. Crucially, the angular spectrum of the interacting mode associated with q𝑞qitalic_q is strongly anisotropic: it predominantly propagates against the tweezer, see Fig.1(a).

Harnessing such directionality, we couple the back-scattered light, which carries information about the nanoparticle’s motion, from the output of one tweezer to the input of another. This can be accomplished using circulators that define a one-way loop in combination with transmission lines (e.g., optical fibers). Hereafter, we consider the case of two identical optical tweezers interconnected with identical optical transmission lines, as illustrated in Fig.1(b). Each transmission line introduces a phase lag θ𝜃\thetaitalic_θ, and has a finite transmittance η𝜂\etaitalic_η owing to finite collection efficiency and imperfect mode matching. Losses, in turn, allow independent, uncorrelated modes aextsubscript𝑎exta_{\mathrm{ext}}italic_a start_POSTSUBSCRIPT roman_ext end_POSTSUBSCRIPT to leak in the loop. Inline optical switches allow to sever the loop and divert the backscattered light from each nanoparticle to separate hom*odyne receivers that are used for state initialization and tomography.

We now derive the equations of motion for the composite system. As the transmission-line loop can be regarded as a bad ring cavity, delayed interactions within a mechanical period can be neglected if Ω0L/(cg)1much-less-thansubscriptΩ0𝐿subscript𝑐𝑔1\Omega_{0}L/(\mathcal{F}c_{g})\ll 1roman_Ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_L / ( caligraphic_F italic_c start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT ) ≪ 1 where L𝐿Litalic_L, cgsubscript𝑐𝑔c_{g}italic_c start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT and \mathcal{F}caligraphic_F denote the loop length, optical group velocity and cavity finesse, respectively. For standard optical fibers, using =(1η2)/(1η)21superscript𝜂2superscript1𝜂2\mathcal{F}=(1-\eta^{2})/(1-\eta)^{2}caligraphic_F = ( 1 - italic_η start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) / ( 1 - italic_η ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT, Ω02π×100kHzsubscriptΩ02𝜋times100kHz\Omega_{0}\approx 2\pi\times$100\text{\,}\mathrm{k}\mathrm{H}\mathrm{z}$roman_Ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ≈ 2 italic_π × start_ARG 100 end_ARG start_ARG times end_ARG start_ARG roman_kHz end_ARG, and η=0.5𝜂0.5\eta=0.5italic_η = 0.5, the approximation holds up to L10msimilar-to𝐿10mL\sim 10\leavevmode\nobreak\ \mathrm{m}italic_L ∼ 10 roman_msup . Each nanoparticle, labelled by the index j=1,2𝑗12j=1,2italic_j = 1 , 2, obeys the Langevin equation

q¨j+Ω02qj=Ω02Γq(ainj+ainj,),subscript¨𝑞𝑗superscriptsubscriptΩ02subscript𝑞𝑗subscriptΩ02subscriptΓqsuperscriptsubscript𝑎in𝑗superscriptsubscript𝑎in𝑗\ddot{q}_{j}+\Omega_{0}^{2}q_{j}=\Omega_{0}\sqrt{2\Gamma_{\text{q}}}\left(a_{%\mathrm{in}}^{j}+a_{\mathrm{in}}^{j,\dagger}\right),over¨ start_ARG italic_q end_ARG start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT + roman_Ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_q start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT = roman_Ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT square-root start_ARG 2 roman_Γ start_POSTSUBSCRIPT q end_POSTSUBSCRIPT end_ARG ( italic_a start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_j end_POSTSUPERSCRIPT + italic_a start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_j , † end_POSTSUPERSCRIPT ) ,(1)

where ΓqsubscriptΓq\Gamma_{\text{q}}roman_Γ start_POSTSUBSCRIPT q end_POSTSUBSCRIPT represents the decoherence rate due to quantum backaction.In addition to Eq.(1), we can write the input-output relationsGardinerandCollett (1985)

aoutj=ainj+i2Γqqj,superscriptsubscript𝑎out𝑗superscriptsubscript𝑎in𝑗i2subscriptΓqsubscript𝑞𝑗a_{\mathrm{out}}^{j}=a_{\mathrm{in}}^{j}+\text{\rm i}\sqrt{2\Gamma_{\text{q}}}%q_{j},italic_a start_POSTSUBSCRIPT roman_out end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_j end_POSTSUPERSCRIPT = italic_a start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_j end_POSTSUPERSCRIPT + i square-root start_ARG 2 roman_Γ start_POSTSUBSCRIPT q end_POSTSUBSCRIPT end_ARG italic_q start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ,(2)

with i=1i1\text{\rm i}=\sqrt{-1}i = square-root start_ARG - 1 end_ARG the imaginary unit. Equations(2) and(1) show that the amplitude quadrature of the interacting mode drives the motion, while the phase quadratures probes it. Given the loop geometry considered in Fig.1(b), the input-output fields must satisfy the closure relations

ainj=(ηaout3j+1ηaext3j)eiθ.superscriptsubscript𝑎in𝑗𝜂superscriptsubscript𝑎out3𝑗1𝜂superscriptsubscript𝑎ext3𝑗superscriptei𝜃a_{\mathrm{in}}^{j}=\left(\sqrt{\eta}a_{\mathrm{out}}^{3-j}+\sqrt{1-\eta}a_{%\mathrm{ext}}^{3-j}\right)\text{\rm e}^{\text{\rm i}\theta}.italic_a start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_j end_POSTSUPERSCRIPT = ( square-root start_ARG italic_η end_ARG italic_a start_POSTSUBSCRIPT roman_out end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 - italic_j end_POSTSUPERSCRIPT + square-root start_ARG 1 - italic_η end_ARG italic_a start_POSTSUBSCRIPT roman_ext end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 - italic_j end_POSTSUPERSCRIPT ) e start_POSTSUPERSCRIPT i italic_θ end_POSTSUPERSCRIPT .(3)
Motional entanglement of remote optically levitated nanoparticles (2)

Solving Eq.(2) and(3) for the two input fields yieldssup

ainj=gL[i2Γq(αqj+q3j)+gη(αaextj+aext3j)],superscriptsubscript𝑎in𝑗subscript𝑔Ldelimited-[]i2subscriptΓq𝛼subscript𝑞𝑗subscript𝑞3𝑗subscript𝑔𝜂𝛼superscriptsubscript𝑎ext𝑗superscriptsubscript𝑎ext3𝑗a_{\mathrm{in}}^{j}=g_{\mathrm{L}}\left[\text{\rm i}\sqrt{2\Gamma_{\text{q}}}(%\alpha q_{j}+q_{3-j})+g_{\eta}(\alpha a_{\mathrm{ext}}^{j}+a_{\mathrm{ext}}^{3%-j})\right],italic_a start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_j end_POSTSUPERSCRIPT = italic_g start_POSTSUBSCRIPT roman_L end_POSTSUBSCRIPT [ i square-root start_ARG 2 roman_Γ start_POSTSUBSCRIPT q end_POSTSUBSCRIPT end_ARG ( italic_α italic_q start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT + italic_q start_POSTSUBSCRIPT 3 - italic_j end_POSTSUBSCRIPT ) + italic_g start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT ( italic_α italic_a start_POSTSUBSCRIPT roman_ext end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_j end_POSTSUPERSCRIPT + italic_a start_POSTSUBSCRIPT roman_ext end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 - italic_j end_POSTSUPERSCRIPT ) ] ,(4)

where α(θ)=ηeiθ𝛼𝜃𝜂superscriptei𝜃\alpha(\theta)=\sqrt{\eta}\text{\rm e}^{\text{\rm i}\theta}italic_α ( italic_θ ) = square-root start_ARG italic_η end_ARG e start_POSTSUPERSCRIPT i italic_θ end_POSTSUPERSCRIPT denotes the transmission line transfer function, gL(θ)=α/(1α2)subscript𝑔L𝜃𝛼1superscript𝛼2g_{\mathrm{L}}(\theta)=\alpha/(1-\alpha^{2})italic_g start_POSTSUBSCRIPT roman_L end_POSTSUBSCRIPT ( italic_θ ) = italic_α / ( 1 - italic_α start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) the Airy function of the effective low-finesse resonator generated by the loop, and gη2=(1η)/ηsuperscriptsubscript𝑔𝜂21𝜂𝜂g_{\mathrm{\eta}}^{2}=(1-\eta)/\etaitalic_g start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = ( 1 - italic_η ) / italic_η.The amplitude quadrature of ainsubscript𝑎ina_{\mathrm{in}}italic_a start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT drives the nanoparticle’s motion. Equation(4) thus indicates that the loop effect is twofold. The first term, αgLqjproportional-toabsent𝛼subscript𝑔Lsubscript𝑞𝑗\propto\alpha g_{\mathrm{L}}q_{j}∝ italic_α italic_g start_POSTSUBSCRIPT roman_L end_POSTSUBSCRIPT italic_q start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT renormalizes the trap stiffness depending on the round-trip phase 2θ2𝜃2\theta2 italic_θ. The second term, gLq3jproportional-toabsentsubscript𝑔Lsubscript𝑞3𝑗\propto g_{\mathrm{L}}q_{3-j}∝ italic_g start_POSTSUBSCRIPT roman_L end_POSTSUBSCRIPT italic_q start_POSTSUBSCRIPT 3 - italic_j end_POSTSUBSCRIPT, introduces a coupling term originating from the modulation of the on-site optical force due to the interference between the tweezer and the interacting mode of the distant particle. For convenience, we write dynamics in the normal mode basis upon introducing the joint modes q±=(q1±q2)/2subscript𝑞plus-or-minusplus-or-minussubscript𝑞1subscript𝑞22q_{\pm}=(q_{1}\pm q_{2})/\sqrt{2}italic_q start_POSTSUBSCRIPT ± end_POSTSUBSCRIPT = ( italic_q start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ± italic_q start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) / square-root start_ARG 2 end_ARG and p±=(p1±p2)/2subscript𝑝plus-or-minusplus-or-minussubscript𝑝1subscript𝑝22p_{\pm}=(p_{1}\pm p_{2})/\sqrt{2}italic_p start_POSTSUBSCRIPT ± end_POSTSUBSCRIPT = ( italic_p start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ± italic_p start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) / square-root start_ARG 2 end_ARG, associated with the nanoparticle common (+)(+)( + ) and relative ()(-)( - ) motion. From Eqs.(1) and(4), we obtain

q¨±+Ω±2q±=Ω04Γqn±,subscript¨𝑞plus-or-minussuperscriptsubscriptΩplus-or-minus2subscript𝑞plus-or-minussubscriptΩ04subscriptΓqsubscript𝑛plus-or-minus\ddot{q}_{\pm}+\Omega_{\pm}^{2}q_{\pm}=\Omega_{0}\sqrt{4\Gamma_{\text{q}}}n_{%\pm},over¨ start_ARG italic_q end_ARG start_POSTSUBSCRIPT ± end_POSTSUBSCRIPT + roman_Ω start_POSTSUBSCRIPT ± end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_q start_POSTSUBSCRIPT ± end_POSTSUBSCRIPT = roman_Ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT square-root start_ARG 4 roman_Γ start_POSTSUBSCRIPT q end_POSTSUBSCRIPT end_ARG italic_n start_POSTSUBSCRIPT ± end_POSTSUBSCRIPT ,(5)

where

Ω±2=Ω0(Ω0±4Γqηsin(θ)1+η2ηcos(θ))superscriptsubscriptΩplus-or-minus2subscriptΩ0plus-or-minussubscriptΩ04subscriptΓq𝜂𝜃minus-or-plus1𝜂2𝜂𝜃\Omega_{\pm}^{2}=\Omega_{0}\left(\Omega_{0}\pm\frac{4\Gamma_{\text{q}}\sqrt{%\eta}\sin(\theta)}{1+\eta\mp 2\sqrt{\eta}\cos(\theta)}\right)roman_Ω start_POSTSUBSCRIPT ± end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = roman_Ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( roman_Ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ± divide start_ARG 4 roman_Γ start_POSTSUBSCRIPT q end_POSTSUBSCRIPT square-root start_ARG italic_η end_ARG roman_sin ( start_ARG italic_θ end_ARG ) end_ARG start_ARG 1 + italic_η ∓ 2 square-root start_ARG italic_η end_ARG roman_cos ( start_ARG italic_θ end_ARG ) end_ARG )(6)

defines the normal mode frequencies, and n±subscript𝑛plus-or-minusn_{\pm}italic_n start_POSTSUBSCRIPT ± end_POSTSUBSCRIPT are two mutually uncorrelated and non-local fluctuations driving the joint modes. The derivation of Eq.(5) and the expressions for n±subscript𝑛plus-or-minusn_{\pm}italic_n start_POSTSUBSCRIPT ± end_POSTSUBSCRIPT are provided insup .

In Fig.2(a) we plot Ω±2superscriptsubscriptΩplus-or-minus2\Omega_{\pm}^{2}roman_Ω start_POSTSUBSCRIPT ± end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT for Γq/Ω0=1subscriptΓqsubscriptΩ01\Gamma_{\text{q}}/\Omega_{0}=1roman_Γ start_POSTSUBSCRIPT q end_POSTSUBSCRIPT / roman_Ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = 1 as a function of the phase θ𝜃\thetaitalic_θ. For θ{0,π}𝜃0𝜋\theta\in\{0,\pi\}italic_θ ∈ { 0 , italic_π } we observe that the value of Ω+2superscriptsubscriptΩ2\Omega_{+}^{2}roman_Ω start_POSTSUBSCRIPT + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT (Ω2superscriptsubscriptΩ2\Omega_{-}^{2}roman_Ω start_POSTSUBSCRIPT - end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT) is always larger (smaller) than the bare oscillator one Ω02superscriptsubscriptΩ02\Omega_{0}^{2}roman_Ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT. This fact is a manifestation of the normal mode splitting in coupled oscillators. Note that the splitting can exceed the frequency bare modes, which is the hallmark of ultra-strong coupling Forn-Díazetal. (2019); Frisk Kockumetal. (2019); Markovićetal. (2018). Consequently, Ω2superscriptsubscriptΩ2\Omega_{-}^{2}roman_Ω start_POSTSUBSCRIPT - end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT becomes negative and the anti-symmetric mode qsubscript𝑞q_{-}italic_q start_POSTSUBSCRIPT - end_POSTSUBSCRIPT becomes unstable (shaded gray area)sup . Finally, we calculate the decoherence rates Γ±=2Γq𝒩±2subscriptΓplus-or-minus2subscriptΓqsuperscriptsubscript𝒩plus-or-minus2\Gamma_{\pm}=2\Gamma_{\text{q}}\mathcal{N}_{\pm}^{2}roman_Γ start_POSTSUBSCRIPT ± end_POSTSUBSCRIPT = 2 roman_Γ start_POSTSUBSCRIPT q end_POSTSUBSCRIPT caligraphic_N start_POSTSUBSCRIPT ± end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT,which are proportional to the effective photon recoil rates that drive the joint modes. We obtain

𝒩±2=dtn±(t)n±(t)=121η1+η2ηcos(θ).superscriptsubscript𝒩plus-or-minus2subscript𝑡delimited-⟨⟩subscript𝑛plus-or-minus𝑡subscript𝑛plus-or-minussuperscript𝑡121𝜂minus-or-plus1𝜂2𝜂𝜃\mathcal{N}_{\pm}^{2}=\int_{\mathbb{R}}\differential t\,\langle n_{\pm}(t)n_{%\pm}(t^{\prime})\rangle=\frac{1}{2}\frac{1-\eta}{1+\eta\mp 2\sqrt{\eta}\cos(%\theta)}.caligraphic_N start_POSTSUBSCRIPT ± end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = ∫ start_POSTSUBSCRIPT roman_ℝ end_POSTSUBSCRIPT start_DIFFOP roman_d end_DIFFOP italic_t ⟨ italic_n start_POSTSUBSCRIPT ± end_POSTSUBSCRIPT ( italic_t ) italic_n start_POSTSUBSCRIPT ± end_POSTSUBSCRIPT ( italic_t start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ⟩ = divide start_ARG 1 end_ARG start_ARG 2 end_ARG divide start_ARG 1 - italic_η end_ARG start_ARG 1 + italic_η ∓ 2 square-root start_ARG italic_η end_ARG roman_cos ( start_ARG italic_θ end_ARG ) end_ARG .(7)

Figure2(b) shows the dependence of Γ±subscriptΓplus-or-minus\Gamma_{\pm}roman_Γ start_POSTSUBSCRIPT ± end_POSTSUBSCRIPT on the phase θ𝜃\thetaitalic_θ and transmittance η𝜂\etaitalic_η. While the noise strength for the common mode (+++) is peaked at θ=0𝜃0\theta=0italic_θ = 0 and reaches a minimum at θ=π𝜃𝜋\theta=\piitalic_θ = italic_π, the trend is opposite for the relative mode (--). Importantly, it is possible to identify values of θ𝜃\thetaitalic_θ where both Γ+subscriptΓ\Gamma_{+}roman_Γ start_POSTSUBSCRIPT + end_POSTSUBSCRIPT and ΓsubscriptΓ\Gamma_{-}roman_Γ start_POSTSUBSCRIPT - end_POSTSUBSCRIPT are lower than the corresponding bare oscillator value (dashed black line). Thus, the loop effect is not just to redistribute photon recoil between the two particles but can actually reduce it overall. We can understand this fact by noticing that the loop introduces an effective low-finesse resonator (limited by η𝜂\etaitalic_η), which in turn suppresses the density of states into which the particle scatters. All panels in Fig.2 can be extended to the phase interval [π,2π]𝜋2𝜋[\pi,2\pi][ italic_π , 2 italic_π ] by swapping the common and relative modes.

Dynamics- the expectation value and covariance matrix of the state vector 𝐯T=(q+,p+,q,p)superscript𝐯𝑇subscript𝑞subscript𝑝subscript𝑞subscript𝑝\mathbf{v}^{T}=(q_{+},p_{+},q_{-},p_{-})bold_v start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT = ( italic_q start_POSTSUBSCRIPT + end_POSTSUBSCRIPT , italic_p start_POSTSUBSCRIPT + end_POSTSUBSCRIPT , italic_q start_POSTSUBSCRIPT - end_POSTSUBSCRIPT , italic_p start_POSTSUBSCRIPT - end_POSTSUBSCRIPT ) fully encode the state. Initially, we consider both nanoparticles to be in a low-occupation state with 𝐯0=0delimited-⟨⟩subscript𝐯00\langle\mathbf{v}_{0}\rangle=0⟨ bold_v start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ⟩ = 0 and covariance matrix 𝚺0=𝐯0𝐯0T¯subscript𝚺0delimited-⟨⟩¯subscript𝐯0superscriptsubscript𝐯0T\bm{\Sigma}_{0}=\langle\overline{\mathbf{v}_{0}\mathbf{v}_{0}^{\mathrm{T}}}\ranglebold_Σ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = ⟨ over¯ start_ARG bold_v start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT bold_v start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT end_ARG ⟩, where the overline denotes symmetrization. State preparation can be accomplished by using the optical switches to reroute the scattered light from each particle to separate hom*odyne receivers, see Fig1(b). The measurement records are then used to stabilize the nanoparticle conditional state using feedback Mancinietal. (1998); Mengetal. (2020); IsaksenandAndersen (2023).

Starting from this initial condition, we compute the evolution of the covariance matrix 𝚺=𝚺c+𝚺n𝚺superscript𝚺𝑐superscript𝚺𝑛\mathbf{\Sigma}=\mathbf{\Sigma}^{c}+\mathbf{\Sigma}^{n}bold_Σ = bold_Σ start_POSTSUPERSCRIPT italic_c end_POSTSUPERSCRIPT + bold_Σ start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT, which is split into two terms associated with the coherent and incoherent dynamics, respectively. Since the joint modes in Eq.(5) are decoupled, each diagonal block of 𝚺𝚺\bm{\Sigma}bold_Σ evolves independently. The matrix exponential generating the flow of each subspace is 𝚽±(t)=𝐒[r±]𝐑[ϕ±]𝐒[r±]1subscript𝚽plus-or-minus𝑡𝐒delimited-[]subscript𝑟plus-or-minus𝐑delimited-[]subscriptitalic-ϕplus-or-minus𝐒superscriptdelimited-[]subscript𝑟plus-or-minus1\mathbf{\Phi}_{\pm}(t)=\mathbf{S}[\sqrt{r_{\pm}}]\mathbf{R}[\phi_{\pm}]\mathbf%{S}[\sqrt{r_{\pm}}]^{-1}bold_Φ start_POSTSUBSCRIPT ± end_POSTSUBSCRIPT ( italic_t ) = bold_S [ square-root start_ARG italic_r start_POSTSUBSCRIPT ± end_POSTSUBSCRIPT end_ARG ] bold_R [ italic_ϕ start_POSTSUBSCRIPT ± end_POSTSUBSCRIPT ] bold_S [ square-root start_ARG italic_r start_POSTSUBSCRIPT ± end_POSTSUBSCRIPT end_ARG ] start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT, where 𝐒[]𝐒delimited-[]\mathbf{S}[\cdot]bold_S [ ⋅ ] is a squeezing matrix with parameter r±=Ω0/Ω±subscript𝑟plus-or-minussubscriptΩ0subscriptΩplus-or-minus\sqrt{r_{\pm}}=\sqrt{\Omega_{0}/\Omega_{\pm}}square-root start_ARG italic_r start_POSTSUBSCRIPT ± end_POSTSUBSCRIPT end_ARG = square-root start_ARG roman_Ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT / roman_Ω start_POSTSUBSCRIPT ± end_POSTSUBSCRIPT end_ARG, and 𝐑[ϕ±]𝐑delimited-[]subscriptitalic-ϕplus-or-minus\mathbf{R}[\phi_{\pm}]bold_R [ italic_ϕ start_POSTSUBSCRIPT ± end_POSTSUBSCRIPT ] is a clockwise rotation by an angle ϕ±=Ω±tsubscriptitalic-ϕplus-or-minussubscriptΩplus-or-minus𝑡\phi_{\pm}=\Omega_{\pm}titalic_ϕ start_POSTSUBSCRIPT ± end_POSTSUBSCRIPT = roman_Ω start_POSTSUBSCRIPT ± end_POSTSUBSCRIPT italic_t in phase-space. The coherent terms yield

𝚺±c(t)=𝚽±(t)𝚺0𝚽±(t)T.subscriptsuperscript𝚺𝑐plus-or-minus𝑡subscript𝚽plus-or-minus𝑡subscript𝚺0subscript𝚽plus-or-minussuperscript𝑡𝑇\mathbf{\Sigma}^{c}_{\pm}(t)=\mathbf{\Phi}_{\pm}(t)\mathbf{\Sigma}_{0}\mathbf{%\Phi}_{\pm}(t)^{T}.bold_Σ start_POSTSUPERSCRIPT italic_c end_POSTSUPERSCRIPT start_POSTSUBSCRIPT ± end_POSTSUBSCRIPT ( italic_t ) = bold_Φ start_POSTSUBSCRIPT ± end_POSTSUBSCRIPT ( italic_t ) bold_Σ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT bold_Φ start_POSTSUBSCRIPT ± end_POSTSUBSCRIPT ( italic_t ) start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT .(8)

For stable dynamics, i.e., Ω2>0superscriptsubscriptΩ20\Omega_{-}^{2}>0roman_Ω start_POSTSUBSCRIPT - end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT > 0, each element in Eqs.(8) oscillate at twice Ω±subscriptΩplus-or-minus\Omega_{\pm}roman_Ω start_POSTSUBSCRIPT ± end_POSTSUBSCRIPT. In contrast, in the case of unstable dynamics, the covariance matrix elements get squeezed at a rate exp(2Ω±t)proportional-toabsent2subscriptΩplus-or-minus𝑡\propto\exp(2\Omega_{\pm}t)∝ roman_exp ( start_ARG 2 roman_Ω start_POSTSUBSCRIPT ± end_POSTSUBSCRIPT italic_t end_ARG ) Romero-Isart (2017). The incoherent contribution is

𝚺±n(t)=r±2Γ±Ω±(ϕ±sin2ϕ±2r±1sin2ϕ±r±1sin2ϕ±2ϕ±+sin2ϕ±2r±2),subscriptsuperscript𝚺𝑛plus-or-minus𝑡superscriptsubscript𝑟plus-or-minus2subscriptΓplus-or-minussubscriptΩplus-or-minusmatrixsubscriptitalic-ϕplus-or-minus2subscriptitalic-ϕplus-or-minus2superscriptsubscript𝑟plus-or-minus1superscript2subscriptitalic-ϕplus-or-minussuperscriptsubscript𝑟plus-or-minus1superscript2subscriptitalic-ϕplus-or-minus2subscriptitalic-ϕplus-or-minus2subscriptitalic-ϕplus-or-minus2superscriptsubscript𝑟plus-or-minus2\mathbf{\Sigma}^{n}_{\pm}(t)=\frac{r_{\pm}^{2}\Gamma_{\pm}}{\Omega_{\pm}}%\begin{pmatrix}\phi_{\pm}-\frac{\sin 2\phi_{\pm}}{2}&r_{\pm}^{-1}\sin^{2}\phi_%{\pm}\\r_{\pm}^{-1}\sin^{2}\phi_{\pm}&\frac{2\phi_{\pm}+\sin 2\phi_{\pm}}{2r_{\pm}^{2%}}\\\end{pmatrix},bold_Σ start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT start_POSTSUBSCRIPT ± end_POSTSUBSCRIPT ( italic_t ) = divide start_ARG italic_r start_POSTSUBSCRIPT ± end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_Γ start_POSTSUBSCRIPT ± end_POSTSUBSCRIPT end_ARG start_ARG roman_Ω start_POSTSUBSCRIPT ± end_POSTSUBSCRIPT end_ARG ( start_ARG start_ROW start_CELL italic_ϕ start_POSTSUBSCRIPT ± end_POSTSUBSCRIPT - divide start_ARG roman_sin 2 italic_ϕ start_POSTSUBSCRIPT ± end_POSTSUBSCRIPT end_ARG start_ARG 2 end_ARG end_CELL start_CELL italic_r start_POSTSUBSCRIPT ± end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT roman_sin start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_ϕ start_POSTSUBSCRIPT ± end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL italic_r start_POSTSUBSCRIPT ± end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT roman_sin start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_ϕ start_POSTSUBSCRIPT ± end_POSTSUBSCRIPT end_CELL start_CELL divide start_ARG 2 italic_ϕ start_POSTSUBSCRIPT ± end_POSTSUBSCRIPT + roman_sin 2 italic_ϕ start_POSTSUBSCRIPT ± end_POSTSUBSCRIPT end_ARG start_ARG 2 italic_r start_POSTSUBSCRIPT ± end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG end_CELL end_ROW end_ARG ) ,(9)
Motional entanglement of remote optically levitated nanoparticles (3)

indicating a monotonous growth of the position and momentum variance at a rate Γ±subscriptΓplus-or-minus\Gamma_{\pm}roman_Γ start_POSTSUBSCRIPT ± end_POSTSUBSCRIPT, and correlation oscillations at 2Ω±2subscriptΩplus-or-minus2\Omega_{\pm}2 roman_Ω start_POSTSUBSCRIPT ± end_POSTSUBSCRIPTsup . In the following, we use our knowledge of the time-dependent covariance matrix 𝚺(t)𝚺𝑡\mathbf{\Sigma}(t)bold_Σ ( italic_t ) to demonstrate that the in-loop dynamics generates motional entanglement.

Transient entanglement - According to the Duan-Simon criterion, the motional state of the two particles is entangled if νU=Δq+,U2+Δp,U2<1subscript𝜈𝑈delimited-⟨⟩Δsubscriptsuperscript𝑞2𝑈delimited-⟨⟩Δsubscriptsuperscript𝑝2𝑈1\nu_{U}=\langle\Delta q^{2}_{+,U}\rangle+\langle\Delta p^{2}_{-,U}\rangle<1italic_ν start_POSTSUBSCRIPT italic_U end_POSTSUBSCRIPT = ⟨ roman_Δ italic_q start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + , italic_U end_POSTSUBSCRIPT ⟩ + ⟨ roman_Δ italic_p start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - , italic_U end_POSTSUBSCRIPT ⟩ < 1 for some local symplectic transformation U𝑈Uitalic_U Simon (2000); Duanetal. (2000). We can generalize this statement by introducing νminsubscript𝜈min\nu_{\mathrm{min}}italic_ν start_POSTSUBSCRIPT roman_min end_POSTSUBSCRIPT, the minimum value of νUsubscript𝜈𝑈\nu_{U}italic_ν start_POSTSUBSCRIPT italic_U end_POSTSUBSCRIPT under all possible symplectic transformations U𝑈Uitalic_U Serafinietal. (2004); Weedbrooketal. (2012); Kotleretal. (2021). Figure3(a) shows the time evolution of νmin(t)subscript𝜈min𝑡\nu_{\mathrm{min}}(t)italic_ν start_POSTSUBSCRIPT roman_min end_POSTSUBSCRIPT ( italic_t ) for a loop efficiency η=0.5𝜂0.5\eta=0.5italic_η = 0.5, a phase θ=2π/3𝜃2𝜋3\theta=2\pi/3italic_θ = 2 italic_π / 3, and for some representative values of Γq/Ω0subscriptΓqsubscriptΩ0\Gamma_{\text{q}}/\Omega_{0}roman_Γ start_POSTSUBSCRIPT q end_POSTSUBSCRIPT / roman_Ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT. In all curves ΩsubscriptΩ\Omega_{-}roman_Ω start_POSTSUBSCRIPT - end_POSTSUBSCRIPT is imaginary, while the common mode (+) is stable. As a result, νminsubscript𝜈min\nu_{\mathrm{min}}italic_ν start_POSTSUBSCRIPT roman_min end_POSTSUBSCRIPT oscillates at twice the stable mode frequency Ω+subscriptΩ\Omega_{+}roman_Ω start_POSTSUBSCRIPT + end_POSTSUBSCRIPT. The separability criterion is thus maximally violated at a time tπ/(2Ω+)similar-tosuperscript𝑡𝜋2subscriptΩt^{*}\sim\pi/(2\Omega_{+})italic_t start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ∼ italic_π / ( 2 roman_Ω start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ). Moreover, νminsubscript𝜈min\nu_{\text{min}}italic_ν start_POSTSUBSCRIPT min end_POSTSUBSCRIPT decreases with increasing ΓqsubscriptΓq\Gamma_{\text{q}}roman_Γ start_POSTSUBSCRIPT q end_POSTSUBSCRIPT. This is because the correlations (two-mode squeezing) scale exponentially with ΩsubscriptΩ\Omega_{-}roman_Ω start_POSTSUBSCRIPT - end_POSTSUBSCRIPT, which in turn grows with ΓqsubscriptΓq\Gamma_{\text{q}}roman_Γ start_POSTSUBSCRIPT q end_POSTSUBSCRIPT according to Eq.(6). In contrast, the decoherence rate scales only linearly with ΓqsubscriptΓq\Gamma_{\text{q}}roman_Γ start_POSTSUBSCRIPT q end_POSTSUBSCRIPT. Finally, the entanglement vanishes at large times as photon recoil eventually degrades the initial state purity.

Figure.3(b-e) shows the Wigner functions 𝒲jexp[𝐯jT𝚺𝐯j]similar-tosubscript𝒲𝑗expdelimited-[]superscriptsubscript𝐯𝑗T𝚺subscript𝐯𝑗\mathcal{W}_{j}\sim\text{exp}[-\mathbf{v}_{j}^{\mathrm{T}}\mathbf{\Sigma}%\mathbf{v}_{j}]caligraphic_W start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ∼ exp [ - bold_v start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT bold_Σ bold_v start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ] of the initial state in the single particle basis 𝒲01,2superscriptsubscript𝒲012\mathcal{W}_{0}^{1,2}caligraphic_W start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 , 2 end_POSTSUPERSCRIPT, and after an interaction time tsuperscript𝑡t^{*}italic_t start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT in the joint mode basis 𝒲±superscriptsubscript𝒲plus-or-minus\mathcal{W}_{*}^{\pm}caligraphic_W start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT, for Γq/Ω0=2subscriptΓqsubscriptΩ02\Gamma_{\text{q}}/\Omega_{0}=2roman_Γ start_POSTSUBSCRIPT q end_POSTSUBSCRIPT / roman_Ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = 2. Position squeezing in Fig.3(b,c) is due to the departure from the weak measurement limit (ηΓq/Ω01much-less-than𝜂subscriptΓqsubscriptΩ01\eta\Gamma_{\text{q}}/\Omega_{0}\ll 1italic_η roman_Γ start_POSTSUBSCRIPT q end_POSTSUBSCRIPT / roman_Ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ≪ 1) and the consequent break down of the rotating-wave approximation Mengetal. (2020). Moreover, we notice that the covariance ellipses (solid tangerine lines) associated with the Wigner functions 𝒲±superscriptsubscript𝒲plus-or-minus\mathcal{W}_{*}^{\pm}caligraphic_W start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT are anti-correlated and that the unstable mode (-) is squeezed 7.5dB7.5dB7.5\leavevmode\nobreak\ \mathrm{dB}7.5 roman_dB below the zero point motion (dashed black lines) at an angle ξ=arg(1r±1)subscript𝜉1superscriptsubscript𝑟plus-or-minus1\xi_{-}=\arg(1-r_{\pm}^{-1})italic_ξ start_POSTSUBSCRIPT - end_POSTSUBSCRIPT = roman_arg ( 1 - italic_r start_POSTSUBSCRIPT ± end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ). These are both signatures of the emergence of large two-mode squeezing interactions in ultra-strongly coupled oscillators Markovićetal. (2018); Kusturaetal. (2022).

Motional entanglement of remote optically levitated nanoparticles (4)

We conclude this section extracting the maximal logarithmic negativity EN=10min[0,log10(νmin)]subscript𝐸𝑁10min0subscript10subscript𝜈minE_{N}=-10\text{min}[0,\log_{10}(\nu_{\text{min}})]italic_E start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT = - 10 min [ 0 , roman_log start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT ( italic_ν start_POSTSUBSCRIPT min end_POSTSUBSCRIPT ) ] as a function of θ𝜃\thetaitalic_θ and ΓqsubscriptΓq\Gamma_{\text{q}}roman_Γ start_POSTSUBSCRIPT q end_POSTSUBSCRIPT. We show the results in Fig.4 for the case of η=0.5𝜂0.5\eta=0.5italic_η = 0.5 [panel (a)] and η=0.3𝜂0.3\eta=0.3italic_η = 0.3 [panel (b)]. Interestingly, even if larger negativities are reached within the unstable region in parameter space (solid red line), for η=0.5𝜂0.5\eta=0.5italic_η = 0.5 the particles are entangled even in the stable portion of parameter space. Moreover, the negativity for a fixed (η,θ)𝜂𝜃(\eta,\theta)( italic_η , italic_θ ) first grows with ΓqsubscriptΓq\Gamma_{\text{q}}roman_Γ start_POSTSUBSCRIPT q end_POSTSUBSCRIPT but finally saturates for Γq/Ω01much-greater-thansubscriptΓqsubscriptΩ01\Gamma_{\text{q}}/\Omega_{0}\gg 1roman_Γ start_POSTSUBSCRIPT q end_POSTSUBSCRIPT / roman_Ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ≫ 1. Indeed, in such a regime Ω±2±Γqproportional-tosuperscriptsubscriptΩplus-or-minus2plus-or-minussubscriptΓq\Omega_{\pm}^{2}\propto\pm\Gamma_{\text{q}}roman_Ω start_POSTSUBSCRIPT ± end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ∝ ± roman_Γ start_POSTSUBSCRIPT q end_POSTSUBSCRIPT but as correlations grow exp(Ωt)proportional-toabsentsubscriptΩ𝑡\propto\exp(\Omega_{-}t)∝ roman_exp ( start_ARG roman_Ω start_POSTSUBSCRIPT - end_POSTSUBSCRIPT italic_t end_ARG ), the optimal interaction time tΩ+1proportional-tosuperscript𝑡superscriptsubscriptΩ1t^{*}\propto\Omega_{+}^{-1}italic_t start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ∝ roman_Ω start_POSTSUBSCRIPT + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT decreases, resulting in a squeezing factor exp(2ΩΩ+1)2subscriptΩsuperscriptsubscriptΩ1\exp(2\Omega_{-}\Omega_{+}^{-1})roman_exp ( start_ARG 2 roman_Ω start_POSTSUBSCRIPT - end_POSTSUBSCRIPT roman_Ω start_POSTSUBSCRIPT + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT end_ARG ) independent of ΓqsubscriptΓq\Gamma_{\text{q}}roman_Γ start_POSTSUBSCRIPT q end_POSTSUBSCRIPT.

To experimentally certify the generation of an entangled state of motion, one needs to reconstruct 𝚺𝚺\mathbf{\Sigma}bold_Σ. As we show insup , this can be accomplished via an optimal retrodiction filter after subtracting the imprecision noise associated with the monitoring process WisemanandMilburn (2009); Wieczoreketal. (2015); Mengetal. (2020).

Stationary conditional state entanglement - In the previous sections we have considered a binary situation where all the back-scattered light was either circulating in the loop or was diverted into hom*odyne receivers. We now investigate an intermediate configuration where a fraction ηmsubscript𝜂m\eta_{\text{m}}italic_η start_POSTSUBSCRIPT m end_POSTSUBSCRIPT of the light coupled in the transmission line (with collection efficiency ηcsubscript𝜂𝑐\eta_{c}italic_η start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT) is used to measure the system. Simultaneously, a fraction η=ηc(1ηm)𝜂subscript𝜂𝑐1subscript𝜂m\eta=\eta_{c}(1-\eta_{\mathrm{m}})italic_η = italic_η start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT ( 1 - italic_η start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT ) circulates in the loop. Our goal is to show that the conditional state of the system is also non-separable.

Motional entanglement of remote optically levitated nanoparticles (5)

We denote with am1,2superscriptsubscript𝑎m12a_{\text{m}}^{1,2}italic_a start_POSTSUBSCRIPT m end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 , 2 end_POSTSUPERSCRIPT the optical fields at the measurement ports. In-loop correlations among the noise terms aextisuperscriptsubscript𝑎ext𝑖a_{\mathrm{ext}}^{i}italic_a start_POSTSUBSCRIPT roman_ext end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT makes the analytic expression of am1,2superscriptsubscript𝑎m12a_{\mathrm{m}}^{1,2}italic_a start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 , 2 end_POSTSUPERSCRIPT rather lengthy; we report it insup . The key feature is that combining the two fields with a beam splitter, as shown in Fig.5(a), results in output fields am±=(am1±am2)/2superscriptsubscript𝑎mplus-or-minusplus-or-minussuperscriptsubscript𝑎m1superscriptsubscript𝑎m22a_{\mathrm{m}}^{\pm}=(a_{\mathrm{m}}^{1}\pm a_{\mathrm{m}}^{2})/\sqrt{2}italic_a start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT = ( italic_a start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ± italic_a start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) / square-root start_ARG 2 end_ARG that encode only information about the respective joint mode displacement q±subscript𝑞plus-or-minusq_{\pm}italic_q start_POSTSUBSCRIPT ± end_POSTSUBSCRIPT. A hom*odyne receiver with analyzer angle φ𝜑\varphiitalic_φ measures the quadrature Zm±=cosφXm±+sinφYm±superscriptsubscript𝑍mplus-or-minus𝜑superscriptsubscript𝑋mplus-or-minus𝜑superscriptsubscript𝑌mplus-or-minusZ_{\text{m}}^{\pm}=\cos\varphi X_{\text{m}}^{\pm}+\sin\varphi Y_{\text{m}}^{\pm}italic_Z start_POSTSUBSCRIPT m end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT = roman_cos italic_φ italic_X start_POSTSUBSCRIPT m end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT + roman_sin italic_φ italic_Y start_POSTSUBSCRIPT m end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT, where Xm±superscriptsubscript𝑋mplus-or-minusX_{\text{m}}^{\pm}italic_X start_POSTSUBSCRIPT m end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT and Ym±superscriptsubscript𝑌mplus-or-minusY_{\text{m}}^{\pm}italic_Y start_POSTSUBSCRIPT m end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT denote respectively the amplitude and phase quadratures of the fields am±superscriptsubscript𝑎mplus-or-minusa_{\mathrm{m}}^{\pm}italic_a start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT. Interestingly, we showed that fixing the analyzer angle φ~±subscript~𝜑plus-or-minus\tilde{\varphi}_{\pm}over~ start_ARG italic_φ end_ARG start_POSTSUBSCRIPT ± end_POSTSUBSCRIPT of each detector to

tanφ~±=cot(θ)[ηsin(θ)]1subscript~𝜑plus-or-minusminus-or-plus𝜃superscriptdelimited-[]𝜂𝜃1\tan\tilde{\varphi}_{\pm}=\cot(\theta)\mp[\sqrt{\eta}\sin(\theta)]^{-1}roman_tan over~ start_ARG italic_φ end_ARG start_POSTSUBSCRIPT ± end_POSTSUBSCRIPT = roman_cot ( start_ARG italic_θ end_ARG ) ∓ [ square-root start_ARG italic_η end_ARG roman_sin ( start_ARG italic_θ end_ARG ) ] start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT(10)

allows collecting the maximal amount of information on q±subscript𝑞plus-or-minusq_{\pm}italic_q start_POSTSUBSCRIPT ± end_POSTSUBSCRIPT, with efficiency η~=ηcηm/(1η)~𝜂subscript𝜂𝑐subscript𝜂m1𝜂\tilde{\eta}=\eta_{c}\eta_{\mathrm{m}}/(1-\eta)over~ start_ARG italic_η end_ARG = italic_η start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT italic_η start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT / ( 1 - italic_η ). Correspondingly, the imprecision noise inherent to the measurement and the process noise (back-action) decorrelate, allowing to map our system onto the standard problem of continuous position measurements in optomechanics WisemanandMilburn (2009); Dohertyetal. (2012). Drawing from its toolbox, we can readily write the conditional state covariance matrix 𝚺Wsubscript𝚺𝑊\mathbf{\Sigma}_{W}bold_Σ start_POSTSUBSCRIPT italic_W end_POSTSUBSCRIPT of the bipartite systemsup .

In Fig.5(b) we calculate νminsubscript𝜈min\nu_{\text{min}}italic_ν start_POSTSUBSCRIPT min end_POSTSUBSCRIPT for the conditional state covariance 𝚺Wsubscript𝚺𝑊\mathbf{\Sigma}_{W}bold_Σ start_POSTSUBSCRIPT italic_W end_POSTSUBSCRIPT as a function of the back-action rate ΓqsubscriptΓq\Gamma_{\text{q}}roman_Γ start_POSTSUBSCRIPT q end_POSTSUBSCRIPT and transmission line phase θ𝜃\thetaitalic_θ. We assume a collection efficiency ηc=0.5subscript𝜂𝑐0.5\eta_{c}=0.5italic_η start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT = 0.5, and measured fraction ηm=0.8subscript𝜂m0.8\eta_{\mathrm{m}}=0.8italic_η start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT = 0.8, yielding effectively a loop transmission η=ηc(1ηm)=0.1𝜂subscript𝜂𝑐1subscript𝜂m0.1\eta=\eta_{c}(1-\eta_{\mathrm{m}})=0.1italic_η = italic_η start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT ( 1 - italic_η start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT ) = 0.1. In some regions of the parameter space, especially in vicinity of the unstable region, νminsubscript𝜈min\nu_{\text{min}}italic_ν start_POSTSUBSCRIPT min end_POSTSUBSCRIPT reaches values that are comparable to those obtained in the transient dynamics, even for moderate ratios Γq/Ω01subscriptΓqsubscriptΩ01\Gamma_{\text{q}}/\Omega_{0}\approx 1roman_Γ start_POSTSUBSCRIPT q end_POSTSUBSCRIPT / roman_Ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ≈ 1. We therefore anticipate that the measurement outcomes at the optimal analyzer angles φ~±subscript~𝜑plus-or-minus\tilde{\varphi}_{\pm}over~ start_ARG italic_φ end_ARG start_POSTSUBSCRIPT ± end_POSTSUBSCRIPT can be processed using an optimal filter and controller to asymptotically stabilize the conditional state, thereby preparing an entangled steady state of motion of the two nanoparticles.

Conclusion- We proposed a schemeto entangle levitated nanoparticles held in optical tweezers at meter-scale distances solely harnessing optical forces. Importantly, our scheme does not rely on high-finesse cavities or the injection of squeezed light.The nanoparticles must be trapped in ultra-high-vacuum where their motion is predominantly driven by photon recoil, an already demonstrated regimeJainetal. (2016). Coupling the backscattered light into the loop is equivalent to maximizing the detection efficiencyTebbenjohannsetal. (2019), where values higher than 30% have been achievedMagrinietal. (2021). Finally, the phase acquired in the loop can be stabilized by extracting and monitoring a small fraction of the circulating light.

Generalizing our results to an asymmetric configuration, e.g. by setting uneven transmission line phases, will feature a rich parameter space characterized by non-reciprocal interactions and vacuum noise correlations Rudolphetal. (2023).Such entangled states may enhance the force-gradient sensing capabilities of our platform Rudolphetal. (2022), with applications in searches of new physics Afeketal. (2022). Moreover, entangling the motion of massive objects at large distances is a promising prospect for testing quantum mechanicsGhirardietal. (1986); Bassietal. (2013); ArndtandHornberger (2014); Gonzalez-Ballesteroetal. (2021) or to perform locality loophole-free Bell tests with levitated objects Ralphetal. (2000); Thearleetal. (2018), a task that is significantly more challenging as it requires non-Gaussian operationsBanaszekandWódkiewicz (1998); Stobińskaetal. (2007).

Acknowledgements.

I Acknowledgements

This research has been supported by the European Research Council (ERC) under the grant agreement No. [951234] (Q-Xtreme ERC-2020-SyG), the Swiss SERI Quantum Initiative (grant no. UeM019-2), and the Swiss National Science Foundation (grant no. 51NF40-160591). N.C-Z. thanks for support through an ETH Fellowship (grant no. 222-1 FEL-30). The research was funded in part by the Austrian Science Fund (FWF) [10.55776/COE1]. For Open Access purposes, the author has applied a CC BY public copyright license to any author accepted manuscript version arising from this submission.

References

Motional entanglement of remote optically levitated nanoparticles (2024)
Top Articles
Latest Posts
Article information

Author: Melvina Ondricka

Last Updated:

Views: 5459

Rating: 4.8 / 5 (68 voted)

Reviews: 83% of readers found this page helpful

Author information

Name: Melvina Ondricka

Birthday: 2000-12-23

Address: Suite 382 139 Shaniqua Locks, Paulaborough, UT 90498

Phone: +636383657021

Job: Dynamic Government Specialist

Hobby: Kite flying, Watching movies, Knitting, Model building, Reading, Wood carving, Paintball

Introduction: My name is Melvina Ondricka, I am a helpful, fancy, friendly, innocent, outstanding, courageous, thoughtful person who loves writing and wants to share my knowledge and understanding with you.