https://doi.org/10.3390/min13020205 ·
Видання: Minerals, 2023, №2, с.205
Видавець: MDPI AG
Автори:
- Yuhao Zhao
- Conrad Kumul
- Tiangang Wang
- Nathan Mosusu
- Zhongyou Yao
- Yiping Zhu
- Bimin Zhang
- Xueqiu Wang
Анотація
Papua New Guinea (PNG) is located at the convergence edge of the Pacific Plate and the Indo-Australian Plate, consisting of three units. There are three chromium mineralization types in PNG. Based on national-scale geochemical mapping in PNG during 2015–2018, 1399 samples of stream sediments were collected from Highland Region, Papua Peninsula, and New Guinea Islands. This paper preliminarily studied chromium’s geochemical background, spatial distribution characteristics, and geochemical anomalies. The chromium concentration ranged from 3 ppm to 74,600 ppm, with a median value of 145 ppm, which was higher than the upper crustal abundance of chromium and the chromium geochemical baseline of Europe, Australia, North America, and China. In terms of stream sediment samples in different tectonic units, as mafic–ultramafic magmatic rocks are widely developed, the median chromium values of the New Guinea Orogen, including the Papuan Fold Belt, the New Guinea Thrust Belt, the Finisterre Terrane, the Aure Fold Belt, the Eastern Fold Belt, and the Eastern Papuan Composite Terrane, were higher than the value of the Melanesian Arc. The ophiolitic complexes, such as the April ophiolite, the Marum ophiolite, and the Papua ultramafic belt, significantly correlated with the higher chromium concentration. Eleven chromium high anomalies with mineralization potential were delineated, including three laterite and podiform prospecting areas and eight placer prospecting areas. Based on the chromium–nickel integrated anomaly map, comprehensive exploration and exploitation of nickel and chromium can be carried out in 1 and 11 high anomaly areas related to lateritic mineralization.
Джерела фінансування
- National Key Research and Development Program of China
- China Geological Survey
Список літератури
- Mou, B.L. (1999). Element Geochemistry, Beijing University Press. (In Chinese).
- Yan, Continental-scale spatial distribution of chromium (Cr) in China and its relationship with ultramafic-mafic rocks and ophiolitic chromite deposit, Appl. Geochem., № 126, с. 104896
https://doi.org/10.1016/j.apgeochem.2021.104896 - Lv, Kazakhstan’s Chromite Resource Endowment, Development, Import and Its Suggestions for Production Capacity Cooperation between China and Kazakhstan, Northwest. Geol., № 55, с. 297
- National Research Council (2008). Minerals, Critical Minerals, and the U.S. Economy.
- Pellegrini, M. (2014). Critical Raw Materials for the EU, European Commission Enterprise and Industry.
- Hatayama, Criticality assessment of metals for Japan’s resource strategy, Mater. Trans., № 56, с. 229
https://doi.org/10.2320/matertrans.M2014380 - Schulte, R.F. (2022). Chromium, Mineral Commodity Summaries.
- Zheng, Demand Forecasting of China’s Chrome Ore from 2020 to 2030 Based on Grey Neural Network, Resour. Dev. Mark., № 34, с. 747
- Kim, T.Y., and Gould, T. (2021). The Role of Critical Minerals in Clean Energy Transitions, International Energy Agency.
- Yao, Z.Y., Zhao, Y.H., Wang, T.G., Zhu, Y.P., Zhao, X.D., Chen, G., Song, X.X., and Liang, S.Y. (2018). The Geology, Mineral Resources and Mining Investment Envoronment of Pupua New Guinea, Geology Press. (In Chinese).
- Williamson, A., and Hanco*ck, G. (2005). The Geology and Mineral Potential of Papua New Guinea.
- Sheppard, S., and Cranfield, L. (2012). Geological Framework and Mineralization of Papua New Guinea—An Update.
- Holm, Continental collision, orogenesis and arc magmatism of the Miocene Maramuni arc, Papua New Guinea, Gondwana Res., № 28, с. 1117
https://doi.org/10.1016/j.gr.2014.09.011 - Rogerson, The foreland thrust belt of Papua New Guinea, Proc. Pac. Rim Congr., № 87, с. 579
- Wang, National-scale distribution of Cobalt in Papua New Guinea and its significance for mineralization potential, J. Geochem. Explor., № 239, с. 107013
https://doi.org/10.1016/j.gexplo.2022.107013 - Dow, D.B. (1977). A Geological Synthesis of Papua New Guinea.
- Pigram, Tectonic controls on carbonate platform evolution in southern Papua New Guinea: Passive margin to foreland basin, Geology, № 17, с. 199
https://doi.org/10.1130/0091-7613(1989)017<0199:TCOCPE>2.3.CO;2 - Dobmeier, C.J., and Poke, B. (2012). 1:100,000 Geological Map Publication Series of Papua New Guinea, Sheet 7887 Aiome.
- Dobmeier, C.J., Poke, B., and Wagner, B. (2012). 1:100,000 Geological Map Publication Series of Papua New Guinea, Sheet 7886 Minj.
- Pigram, Terranes and accretion history of the New Guinea orogen, BMR J. Aust. Geol. Geophys., № 10, с. 193
- Williamson, A., and Rogerson, R. (1983). Geology and Mineralisation of Misima Island.
- Hoeflaken, F., and Dobmeier, C.J. (2012). 1:100,000 Geological Map Publication Series of Papua New Guinea, Sheet 7688 Yimas.
- Spieler, O., and Hoeflaken, F. (2012). 1:100000 Geological Map Publication Series of Papua New Guinea, Sheet 7488 Double.
- Jaques, Petrology and petrogenesis of cumulate peridotites and gabbros from the Marum Ophiolite Complex, northern Papua New Guinea, J. Petrol., № 22, с. 1
https://doi.org/10.1093/petrology/22.1.1 - Saroa, D. (2012). PNG Minerals 2011.
- Yao, New progress of geology and mineral resources mapping in Oceania, Geol. Bull. China, № 37, с. 510
- Wang, X.Q., Zhang, B.M., and Zhang, Q. (2018). Technical Requirements of International Geochemical Mapping, (In Chinese).
- Zhang, Analytical scheme and quality monitoring system for China Geochemical Baselines, Earth Sci. Front., № 19, с. 33
- Grunsky, Process recognition in multi-element soil and stream-sediment geochemical data, Appl. Geochem., № 24, с. 1602
https://doi.org/10.1016/j.apgeochem.2009.04.024 - Reimann, Element concentrations and variations along a 120-km transect in southern Norway–Anthropogenic vs. geogenic vs. biogenic element sources and cycles, Appl. Geochem., № 22, с. 851
https://doi.org/10.1016/j.apgeochem.2006.12.019 - Holland, H.D., and Turekian, K.K. (2014). Treatise on Geochemistry, Elservier.
- Salminen, R., Plant, J., Reeder, S., and Salminen, R. (2005). Geochemical Atlas of Europe. Part 1, Background Information, Methodology and Maps, 526.
- Reimann, Establishing geochemical background variation and threshold values for 59 elements in Australian surface soil, Total Environ., № 578, с. 633
https://doi.org/10.1016/j.scitotenv.2016.11.010 - Smith, D.B., Cannon, W.F., Woodruff, L.G., Garrett, R.G., Klassen, R., Kilburn, J.E., Horton, J.D., King, H.D., Goldhaber, M.B., and Morrison, J.M. (2005). Major and Trace-Element Concentrations in Soils from Two Continental-Scale Transects of the United States and Canada.
https://doi.org/10.3133/ofr20051253 - Liu, D.S., and Wang, X.Q. (2014, January 20–23). Geochemical Baselines of Chromium in Catchment Sediment/Soil in China. Proceedings of the Annual Meeting of Chinese Geoscience Union, Beijing, China. (In Chinese).
- Liu, H.F., Xu, Y.F., and Li, S.P. (2017). Grouping of 39 Elements and Element Geochemistry, Geology Press. (In Chinese).
- Davies, The geology of New Guinea-the cordilleran margin of the Australian continent, Episodes, № 35, с. 87
https://doi.org/10.18814/epiiugs/2012/v35i1/008 - Wang, Tectonic evolution and Resource potential of Papua New Guinea, East China Geol., № 35, с. 130
- Davies, Emplacement of ophiolite in Papua New Guinea, Geol. Soc. Spec. Publ., № 13, с. 341
https://doi.org/10.1144/GSL.SP.1984.013.01.27 - Demetriades, Continental, regional and local scale geochemical mapping, J. Geochem. Explor., № 154, с. 1
https://doi.org/10.1016/j.gexplo.2015.02.011 - Demetriades, General concepts of geochemical mapping at global, regional, and local scales for mineral exploration and environmental purposes, Geochim. Bras., № 32, с. 136
https://doi.org/10.21715/GB2358-2812.2018322136 - Wang, Global Geochemical Baselines: Understanding the past and predicting the future, Earth Sci. Front., № 19, с. 7
- Wang, China geochemical baselines: Sampling methodology, J. Geochem. Explor., № 148, с. 25
https://doi.org/10.1016/j.gexplo.2014.05.018 - Wang, China soil geochemical baselines network: Data characteristics, Geol. China, № 43, с. 1469
- Deng, Q., Ingham, P.D., Nice, R., and Brett, A. (2019). Ramu Nickel Cobalt Project-NI 43-101 Technical Report, Behre Dolbear Australia Pty Limited.
Публікації, які цитують цю публікацію
Applying Chemical and Statistical Analysis Methods to Evaluate Water and Stream Sediments around the Coal Mine Area in Dazhu, China
Dongping Deng, Yong Wu, Bangzheng Ren, Heng Yin
https://doi.org/10.3390/w15071421 ·
2023, Water, №7, с.1421
Scopus
WoS
Цитувань Crossref:0
National-scale Geochemical Baseline of 69 elements in Papua New Guinea stream sediments
Wang Tiangang, Conrad Kumul, Zhao Yuhao, Nathan Mosusu, Zhang Bimin, Ni Pei, Benedetto De Vivo
https://doi.org/10.1016/j.gexplo.2023.107355
2024, Journal of Geochemical Exploration, с.107355
Scopus
WoS
Цитувань Crossref:0
Знайти всі цитування публікації
Дані публікації
Кількість цитувань | 0 |
Кількість джерел у списку літератури: | 45 |
Видання індексується в Scopus | Так |
Видання індексується в Web of Science | Так |